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Why this document? 
Test-driven development (TDD) is currently hyped. Many people, including TDD trainers, say that you 

are not a serious software developer unless you use TDD. They also claim that TDD is the only way to 

write correct programs. [professionalism] [tdd-podcast] 

Uncle Bob (Robert Martin) even claims that applying TDD and some transformations may even be a 

formal proof of correctness. This however is still to be proven. [premise] 

My experiences with TDD 
Do I really need to write a test before I can create an empty class? It is hard to find the next test. And 

can’t I wait with refactoring until my algorithm is complete so that I only refactor once? And how do I 

know that the production code is correct? How do I know there are no more tests to write? It turns 

out some people actually fail in finding the next test, see my blog post about the Potter Kata [potter-

kata]. 

In conclusion I feel pretty restrained by TDD. 

But what about tests? 
Alright, I may have exaggerated a bit about TDD. But what about tests? Here are my experiences with 

tests: 

 Tests require clean code 

 Tests protect against accidental modification of existing behavior 

o When adding new functionality 

o When refactoring existing functionality 

 Tests are examples of how production code must be used 

 Tests can be specifications of the production code 

o A test can perfectly explain the expected behavior for a method in case an invalid 

parameter is passed. 

o Tests almost never cover all possible input values. So what is the behavior for the 

cases that are not covered by tests? In such cases a specification in text is more clear 

and concise than the tests. 

 Writing tests first helps to clarify specifications 

 I don’t dare to deliver production code without tests! 

Conclusion: I feel quite positive about tests. 

The prime factors kata by Uncle Bob 
Uncle Bob derived an algorithm to calculate the prime factors of an integer number, see [primes-

kata]. Using just 7 tests Uncle Bob derives the following Java program: 



 

There are infinitely many natural numbers (1, 2, 3, …). The parameter n is of type int and n is 

assumed to be a positive number. Therefore there are still more than 2 billion possible input values. 

How can 7 tests convince you that this algorithm works for all these possible input values? And do 

these two nested loops actually terminate for each possible input value? 

I am not convinced by just seven tests at all. 

Professor Edsger Wybe Dijkstra (1930-2002) 
Neither would professor Dijkstra have been. He often claimed: “Program testing can be used to show 

presence of bugs, but never to show their absence!” You might know professor Dijkstra from: 

 Semaphores to synchronize threads 

 Shortest path algorithm 

 Winner of the Turing Award in 1972 

 Goto statement considered harmful 

 His handwritten documents, called EWDs 

And he was also famous for program derivation: to “develop proof and program hand in hand”. I will 

introduce you to program derivation in the next sections. 

Predicates 
First I need to tell you about predicates. A predicate is a function from the state 

space of your program to true or false. Or put differently: a predicate is a 

machine in which you insert all the variables of your program and that returns 

the value true of false based on the values of the variables. 



For example, after execution of the statements1 

int i=0; int j=100; 
the following predicates hold (and many more can be conceived): 

P(i,j) Î i==0 

Q(i,j) Î i<j 
R(i,j) Î i==0 && j==100 

For brevity I omit the parameters of the predicate: R Î i==0 && j==100 

Hoare triple 
Tony Hoare invented a formal system to reason about the correctness of algorithms. It is all about 

Hoare triples. A Hoare triple looks like {Pre} S {Post}. Pre and Post are predicates, S is a 

statement. This triple has the following interpretation:  

When Pre holds and S is executed then if S terminates Post holds. Note that the statement 

must terminate in order for de postcondition to hold! 

Using Hoare triples we can now define rules to prove statements. 

Assignment 
For the assignment the rule is: 

{Pre} x = E {Post} is equivalent to Pre Á Post(x:=E) 

The := operator is the substitution operator. As an example I will proof the following Hoare triple: 

{x == 5} x = x+3 {x > 7} 

  (x > 7)(x:=x+3) 
Î { substitution } 
  x+3 > 7 
Î { calculus } 
  x > 4 
Ë { precondition } 
  x == 5 

Now read from bottom to top and you will see it states Pre Á Post(x:=E). This is the only 

example of a formal proof I will show you, because I don’t want to limit the audience to university 
graduates. 

                                                           
1 Dijsktra invented a special language, called the Guarded Command Language (GCL), which was well suited for 
his way of program derivation. I will stick to Java because most readers understand Java. This saves me the 
trouble of explaining the GCL. 



If-statement 
For the if-statement the rule is: 

{Pre} if (B) S else T {Post} is equivalent to:  

{Pre && B} S {Post} and {Pre && !B} T {Post} 

So, to prove an if-statement the “then path” and the “else path” have to be proven. For the “then 

path” the precondition is strengthened by B. For the “else path” the precondition is strengthened 

by !B. 

As an example let us prove: {true} if (y>=x) u=y else u=x {u == max(x,y)} 

As promised I will not give a formal proof here. First of all, notice the precondition. It does not 

mention any variables. Therefore, the precondition is satisfied no matter which values the variables 

u, x and y have. The postcondition states that u is equal to the maximum value of x and y. 

First I prove the “then path”. That is the path for which y>=x holds. If y>=x then x is not larger than 

y. And thus y is the maximum value of x and y. So after the assignment of y to u the postcondition 

u == max(x,y) is valid. 

Next I prove the “else path”. That is the path for which y>=x is false. If y>=x is false then x>y must 

be true. And if x is larger than y then for sure it is the maximum value of x and y. Thus after assigning 

x to u the postcondition u == max(x,y) is valid. 

Since both the “then path” as the “else path” have been proved the if-statement has been proved. 

While-loop 
{Inv} while (B) S {Post} follows from the following three parts: 

1. {Inv && B} S {Inv} 
2. Inv && !B Á Post 
3. The loop must terminate 

Note that I used Inv instead of Pre. Inv is short for invariant. The invariant should hold before the 

while-loop and it should hold after each iteration, because of part 1. The result of this is that when 

the loop terminates, the invariant still holds. We can thus use the invariant and !B to prove the 

postcondition, as shown in part 2. 

What about part 3? How do you prove that a loop terminates? We use a bound function. A bound 

function takes the variables of your algorithm and returns an integer value. You must prove that after 

each iteration the bound function is decreased by at least one. You also need to prove that the 

bound function cannot get below a lower bound.  

As an example I prove an algorithm to calculate 2  for the given number .  



The first line is the precondition of the algorithm. It states that n is non-negative. It also claims that  

is equal to . You can consider  as an extra variable that stores the value of 

 at the beginning of the algorithm. Since the value of  is only read and not changed by 

an assignment, there is no need to actually create this variable. We only use it to reason about the 

algorithm. 

Next there is the while-loop. First I have to prove that the invariant is valid right before the while-

loop. At that point p is 1 and  is equal to . So I fill in  in the invariant and that 

results in . That is true, thus the invariant holds before the 

while-loop. 

Does the invariant hold after an iteration of the loop? The first assignment doubles the expression 

 and the second assignment halves it again. Thus after execution of the two assignments 

the invariant holds again. 

If the loop terminates, then  is zero. If I apply this to the invariant I get 

. 2^0 is one so this results in , which is the 

postcondition of the algorithm. 

The only thing I still need to prove is that the loop terminates. The bound function I choose is . It is 

decreased by exactly one each iteration. Initially  is at least zero and the loop terminates when  is 

zero. Thus the bound function cannot get below zero. 

This concludes the proof of the while-loop. 

Deriving a solution to the prime factors kata 
So far I discussed how to prove an algorithm after the algorithm was written. Now I will use Dijkstra’s 

style to derive an algorithm. I will derive a solution to the prime factors kata of Uncle Bob. I will do 

this again informally because I do not wish to limit my audience to university graduates. 

For those who forgot: a prime number is an integer number that can only be divided by 1 and the 

number itself (that is: with remainder zero). The number one is not considered to be a prime 

number. Hence, the smallest prime number is two.  

Each integer number except zero consists of a unique product of zero or more prime factors. For 

example: 10 = 2 * 5, 8 = 2 * 2 * 2 and 1 has zero prime factors. 

Let me start with a specification of the algorithm: 



The method defines a variable called , which is returned. The pseudo-statement 

 is the part that has to be derived. Its precondition is that  is positive. I use the trick with 

 again to store the value of , since I plan on changing . The postcondition of 

 is that the list factors contains all prime factors of . 

First attempt 
Look at this table: 

    2 * 2 * 5 * 7 [] 

2 * 5 * 7 [2] 

5 * 7 [2, 2] 

7 [2, 2, 5] 

1 [2, 2, 5, 7] 

 

My first idea for the algorithm is to make a loop. Each iteration one prime factor of  is removed 

from  and added to . Removing a factor from  is performed by dividing  by the factor. 

The loop terminates when there are no more prime factors, that is, when  equals 1. 

This inspires me to introduce these two invariants: 

1.  contains only primes 

 

The bound function is . It decreases by at least one each iteration and it cannot get below one. This 

leads to the following algorithm: 

Now I have to find a way to implement . I will try to remove the prime 

factors in ascending order. Hey, I can add a third invariant to express this idea: 

3.  has no prime factors less than  



 is a new variable. How should I initialize it? The smallest prime number is 2. So there 

are no prime factors smaller than 2. If I initialize candidate to 2 then invariant 3 holds before the 

while-loop. 

What about the statements inside the loop? I’d like to increase , because if 

 is larger than , then all prime factors have been removed from . If  is 

not a prime number or if it is not a factor of , then I can safely increase  by one. If 

 is a prime factor and is a factor of , then I cannot increase  Instead I can 

remove this prime factor from . This leads to the following algorithm: 

The expression  is true if and only if  is a factor of . 

The bound function  is not correct anymore. In case  is not a prime factor of , the 

bound function  does not decrease. The bound function  

works. The “then path” of the if-statement decreases , the “else path” increases  thus 

 decreases each iteration.  is at least one and  is 

at most . If  is a prime number, then  will be equal to 

 at the end. That is highest value  can get. Together with  

this results in the lower bound for the bound function:  is at 

least zero. 

Now I still have to deal with the part  in case  is a factor of 

. Here mathematics comes to the rescue! Assume that  is not prime. In that case 

 consists of the product of prime factors. Each of these prime factors is smaller than 

 and is a prime factor of  too. But wait, invariant 3 says that that is not possible! This is 

a contradiction. Therefore I can conclude that if  is a factor of  then  must 

be a prime factor. (This proof technique is called a “proof by contradiction”.) 

So here is the completed algorithm: 



Isn’t that great? I derived an algorithm to calculate prime factors without even using Eratosthenes’ 

sieve to find out which number is prime or not. 

Second attempt 
The algorithm I derived previously either removes a prime factor from  or it increases . 

Now I aim for a solution where I can increase  each iteration. 

Look at this table: 

    2 * 2 * 3 * 3 * 5 [] 

3 * 3 * 5 [2, 2] 

5 [2, 2, 3, 3] 

1 [2, 2, 3, 3, 5] 

 

Again I try to remove prime factors in each iteration. But this time I remove all “occurrences” of a 

prime factor instead of one occurrence at a time. This leads me to writing this algorithm: 

I use the same three invariants and bound functions as before: 

Invariant 1:  contains only primes 

Invariant 2:  

Invariant 3:  has no prime factors less than  

Bound function:  



Now I have to derive code for 

. This turns out to be quite easy: 

Now I still have to deal with the part  in case  is a factor of 

. It turns out the proof given by attempt 1 is applicable here too. Therefore I can conclude that if 

 is a factor of  then  must be a prime factor. 

So here is the completed algorithm: 

 

Let me apply some syntactic sugar: if I use for-loops instead of while-loops, the algorithm looks like 

this: 

And this is exactly the same algorithm that Uncle Bob derived using TDD. Now I know it is correct, 

because I proved it. 

Did you see the invariants and mathematics I needed to prove the algorithm? Do you understand 

now why I am not convinced of the correctness by the seven tests Uncle Bob came up with? 



Conclusions 
There is no guarantee that TDD results in correct code. 

Deriving and proving an algorithm can go hand in hand. 

TDD and formal proofs are tools, not goals. The goal is to create correct code. Tests are the best way 

to protect programmers against introducing bugs in existing code. 
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